Regulation of enteric neuron migration by the gaseous messenger molecules CO and NO.

نویسندگان

  • Sabine Knipp
  • Gerd Bicker
چکیده

The enteric nervous system (ENS) of insects is a useful model to study cell motility. Using small-molecule compounds to activate or inactivate biosynthetic enzymes, we demonstrate that the gaseous messenger molecules carbon monoxide (CO) and nitric oxide (NO) regulate neuron migration in the locust ENS. CO is produced by heme oxygenase (HO) enzymes and has the potential to signal via the sGC/cGMP pathway. While migrating on the midgut, the enteric neurons express immunoreactivity for HO. Here, we show that inhibition of HO by metalloporphyrins promotes enteric neuron migration in intact locust embryos. Thus, the blocking of enzyme activity results in a gain of function. The suppression of migratory behavior by activation of HO or application of a CO donor strongly implicates the release of CO as an inhibitory signal for neuron migration in vivo. Conversely, inhibition of nitric oxide synthase or application of the extracellular gaseous molecule scavenger hemoglobin reduces cell migration. The cellular distribution of NO and CO biosynthetic enzymes, together with the results of the chemical manipulations in whole embryo culture suggest CO as a modulator of transcellular NO signals during neuronal migration. Thus, we provide the first evidence that CO regulates embryonic nervous system development in a rather simple invertebrate model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaseous Mediators in the Enteric Nervous System

The enteric nervous system is an independent nervous system that controls vital gut functions including motility and secretion. Enteric neurons use a variety of neurotransmitters to modulate neural as well as muscle and epithelial activity. Among them are three gaseous mediators which are nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H2S). All three have potent inhibitory effec...

متن کامل

Regulation of colonic ion transport by gasotransmitters.

Gaseous molecules such as nitric oxide (NO), hydrogen sulfide (H₂S), or carbon monoxide (CO) are involved in the regulation of colonic water and salt transport, which can be switched between absorption and secretion. Nitric oxide is produced from the amino acid L-arginine by different isoforms of the enzyme NO synthase, which are expressed both by enteric neurones and by the colonic epithelium....

متن کامل

Investigation of chemical adsorption of CO, CO2, [12 and NO molecules on inside and outside of single-wall nanotube using HF and DET calculations

In this research. CO gas molthules were approached to single-wall carbon nanotube (SWNT) and (6,0) CNTsurface from carbon side and oxygen side in three states (top, bridge, centre) and two shapes ( erlica I.horizontal), then adsorption energies were calculated by B3TYP/6-310 B3LYPI3-216" and Hge3-210"methods after that they were compared m order to obtain the most stable adsorption state. OFT a...

متن کامل

TRP channels: sensors and transducers of gasotransmitter signals

The transient receptor potential (trp) gene superfamily encodes cation channels that act as multimodal sensors for a wide variety of stimuli from outside and inside the cell. Upon sensing, they transduce electrical and Ca(2+) signals via their cation channel activities. These functional features of TRP channels allow the body to react and adapt to different forms of environmental changes. Indee...

متن کامل

Gaseous modulators in the control of the hypothalamic neurohypophyseal system.

Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous molecules produced by the brain. Within the hypothalamus, gaseous molecules have been highlighted as autocrine and paracrine factors regulating endocrine function. Therefore, in the present review, we briefly discuss the main findings linking NO, CO, and H2S to the control of body fluid homeostasis at the hypothalam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 136 1  شماره 

صفحات  -

تاریخ انتشار 2009